

For the Change Makers

Dr. Iman Ahmadi Assistant Prof. of Marketing

Marketing & Strategy Analytics: Supervised Learning: Regression Trees

Overview of Regression Tree

Splitting criteria

- At any given point in tree, choose to split on
 - independent variable
 - value within the respective independent variable

that maximizes reduction in Sum of Squared Errors (SSE)

Predicted value

<u>Average</u> value of observations (of dependent variable) in each leaf node

Lantz, B. (2015) Machine Learning with R (Second edition). Birmingham: Packt Publishing. Chapter 6.

Using Reduction in Sum of Squared Errors (SSE) to Determine Appropriate Split

- Basic idea of SSE similar to basic idea of Information Gain
- Reduction in SSE for a possible variable (F) is difference between SSE in segment
 - before the split
 - after the split: weighted SSE

SSE before split =
$$\sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

SSE after split =
$$\sum_{i=1}^{c} \sum_{j=1}^{n_i} (y_{ji} - \hat{y}_{ji})^2$$

j: index for observation i: index for subset (after split) n: number of observations; n_i : number of observations in subset i; c: number of subsets after split; $n_1 + \dots + n_c = n;$ y_j : the dependent variable before split; \hat{y}_j : the predicted value before split; y_{ji} : the dependent variable (in subset i) after split; \hat{y}_{ij} : the predicted value (in subset i) after split;

Reduction in SSE(F) = SSE before split-SSE after split

- \hat{y}_{ji} , i.e., predicted value for observation j in subset i
 - For example, in regression tree: $\hat{y}_{ji} = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ji}$

Miguel Forte, R. (2015) Mastering Predictive Analytics with R. Birmingham: Packt Publishing. Chapter 6.

Using Standard Deviation Reduction (SDR) to Determine Appropriate Split

- SDR for a possible (independent) variable (F) is difference between standard deviation (SD) in segment
 - before the split
 - after the split: weighted sum of SD

SD before split = sd(S)

$$SD after split = \sum_{i=1}^{c} \frac{|S_i|}{|S|} sd(S_i)$$
$$SDR(F) = sd(S) - \sum_{i=1}^{c} \frac{|S_i|}{|S|} sd(S_i)$$

S: subset of data; c: number of subsets after split; $|S_i|$: size of subset i generated from S; |S|: size of subset S; sd(S): standard deviation of subset S; $sd(S_i)$: standard deviation of subset i generated from S

Miguel Forte, R. (2015) Mastering Predictive Analytics with R. Birmingham: Packt Publishing. Chapter 6.

Exercise 6.2 – Predicting Quality of Wines (I/II)

- A wine making is a profitable but challenging and competitive business. Wine industry has heavily invested in ways to assist wine makers.
- You are asked to come up with a model that helps to predict the quality of wines and identify key factors that affect quality of a wine.
- Use dataset "Wine" and:
 - build a regression tree in R using rpart command (dependent variable: 'quality')
 - interpret your results and plot them

("Wine" R code)

Exercise 6.2 – Predicting Quality of Wines (II/II)

• Dataset includes:

- 4,898 observations
- 12 variables
 - Independent variables: 11 chemical properties of samples:
 - laboratory analysis of fixed acidity, volatile acidity, and citric acid
 - sugar content
 - chlorides
 - free sulfur dioxide and total sulfur dioxide
 - density, alcohol, pH, and sulphates
 - Dependent variable: quality scale ranging from 0 (very bad) to 10 (excellent)

("Wine" R code)

wbs.ac.uk

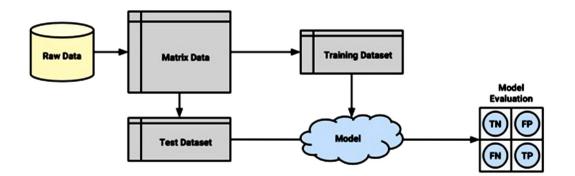
Holdout Method

Warwick Business School

wbs.ac.uk

Holdout Method

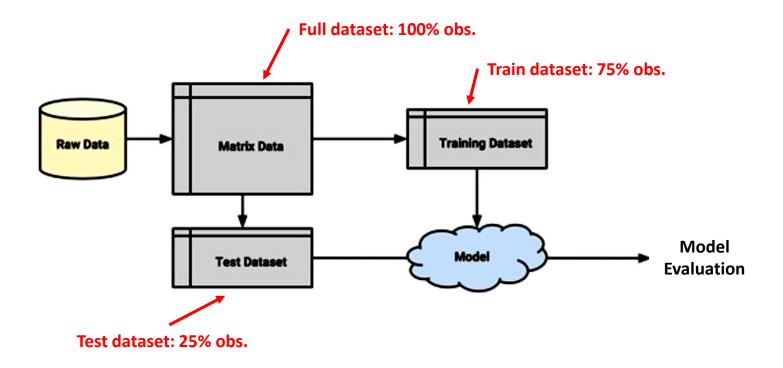
- Holdout method is procedure of splitting data into training and test subsets
 - model builds upon training dataset
 - model then predicts upon test dataset
 - keep one-third to 10% of the whole data (as rule of thumb) for testing



Lantz, B. (2015) Machine Learning with R (Second edition). Birmingham: Packt Publishing. Chapter 10.

Application of Holdout Method in: Regression Trees

Visualizing Holdout Method: "Predicting Quality of Wines"



Application of Holdout Method on "Quality of Wines"

- Data:
 - 4,898 observations
 - 12 variables
 - 11 chemical properties of samples:
 - · laboratory analysis of fixed acidity, volatile acidity, and citric acid
 - sugar content
 - chlorides
 - free sulfur dioxide and total sulfur dioxide
 - density, alcohol, pH, and sulphates
 - quality scale ranging from zero (very bad) to 10 (excellent)
- Split data
 - 75% for training (i.e., observations 1 to 3,750)
 - 25% for testing (i.e., observations 3,751 to 4,898)
- Evaluate the model

("Wine_Holdout" R code)

Reminder: "Quality of Wines"

Step 1: explore your data

str(wine)

'data.frame': 4898 obs. of 12 variables:				
\$	fixed.acidity	:	num	6.7 5.7 5.9 5.3 6.4 7 7.9 6.6 7 6.5
\$	volatile.acidity	:	num	0.62 0.22 0.19 0.47 0.29 0.14 0.12 0.38
\$	citric.acid	:	num	0.24 0.2 0.26 0.1 0.21 0.41 0.49 0.28
\$	residual.sugar	:	num	1.1 16 7.4 1.3 9.65 0.9 5.2 2.8 2.6 3.9
\$	chlorides	:	num	0.039 0.044 0.034 0.036 0.041 0.037
\$	free.sulfur.dioxide	:	num	6 41 33 11 36 22 33 17 34 40
\$	total.sulfur.dioxide	e:	num	62 113 123 74 119 95 152 67 90 130
\$	density	:	num	0.993 0.999 0.995 0.991 0.993
\$	рН	:	num	3.41 3.22 3.49 3.48 2.99 3.25 3.18 3.21
\$	sulphates	:	num	0.32 0.46 0.42 0.54 0.34 0.43 0.47 0.47
\$	alcohol	:	num	10.4 8.9 10.1 11.2 10.9
\$	quality	:	int	5 6 6 4 6 6 6 6 6 7

Step 2: Create Train and Test Dataset

Let's take the first 75% of observations as train and the rest as test dataset

wine_train <- wine[1:3750,]
wine test <- wine[3751:4898,]</pre>

Step 3: Training the Model on the Train Dataset

library(rpart)
m.rpart <- rpart(quality ~ ., data = wine_train)</pre>

Note: As usual, you can get simple/detailed information about the tree you have made using:

m.rpart
summary(m.rpart)

Step 4: Apply your Model on Test Dataset and Predict

Predict the quality of wine in the test dataset (i.e., remaining 25% obs.):

p.rpart <- predict(m.rpart, wine_test)</pre>

Step 5: Evaluating Model Performance Using Test Dataset (I/II)

Compare summary for actual quality with predicted quality in the remaining 25% obs.:

summary(wine_test\$quality)

Min. 1st Qu. Median Mean 3rd Qu. Max. 3.000 5.000 6.000 5.901 6.000 9.000

summary(p.rpart)

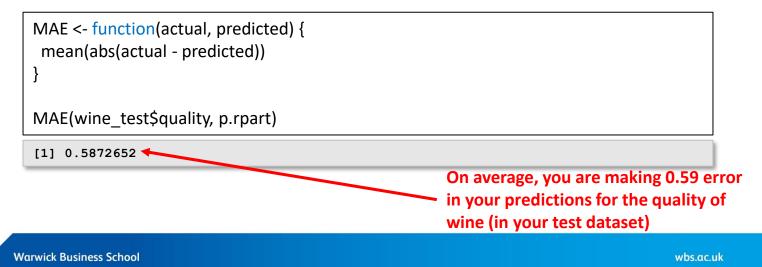
Min. 1st Qu. Median Mean 3rd Qu. Max. 4.545 5.563 5.971 5.893 6.202 6.597

Step 5: Evaluating Model Performance Using Test Dataset (II/II)

Summarize your perditions using MAE:

MAE(Mean Absolute Error) =
$$\frac{1}{n} \sum_{i=1}^{n} |e_i|$$
, e_i : error for prediction of wine *i*

Function for MAE and check your model performance on the test dataset:



Thank You!

Iman.Ahmadi@wbs.ac.uk Room No.: 3.207