
Marketing & Strategy
Analytics:
Supervised Learning: Regression Trees

Dr. Iman Ahmadi
Assistant Prof. of Marketing

Overview of Regression Tree

Splitting criteria

• At any given point in tree, choose to split on
• independent variable

• value within the respective independent variable

that maximizes reduction in Sum of Squared Errors (SSE)

Predicted value

• Average value of observations (of dependent variable) in each
leaf node

Lantz, B. (2015) Machine Learning with R (Second edition). Birmingham: Packt Publishing. Chapter 6.

Using Reduction in Sum of Squared Errors (SSE)
to Determine Appropriate Split

• Basic idea of SSE similar to basic idea of Information Gain
• Reduction in SSE for a possible variable (F) is difference between SSE in

segment
• before the split
• after the split: weighted SSE

• ෝ𝒚𝒋𝒊, i.e., predicted value for observation j in subset i
• For example, in regression tree: ෝ𝒚𝒋𝒊 =

𝟏

𝒏𝒊
σ
𝑗=1
𝑛𝑖 𝑦𝑗𝑖

𝑆𝑆𝐸 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑝𝑙𝑖𝑡 =

𝑗=1

𝑛

𝑦𝑗 − ො𝑦𝑗
2

𝑗: index for observation
𝑖: index for subset (after split)
𝑛: number of observations;
𝑛𝑖: number of observations in subset i;
c: number of subsets after split;
𝑛1 +⋯+ 𝑛𝑐 = 𝑛;
𝑦𝑗: the dependent variable before split;

ො𝑦𝑗: the predicted value before split;

𝑦𝑗𝑖: the dependent variable (in subset i) after split;

ො𝑦𝑗𝑖: the predicted value (in subset i) after split

𝑆𝑆𝐸 𝑎𝑓𝑡𝑒𝑟 𝑠𝑝𝑙𝑖𝑡 =

𝑖=1

𝑐

𝑗=1

𝑛𝑖

𝑦𝑗𝑖 − ො𝑦𝑗𝑖
2

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑆𝑆𝐸(𝐹) = 𝑆𝑆𝐸 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑝𝑙𝑖𝑡- 𝑆𝑆𝐸 𝑎𝑓𝑡𝑒𝑟 𝑠𝑝𝑙𝑖𝑡

Miguel Forte, R. (2015) Mastering Predictive Analytics with R. Birmingham: Packt Publishing. Chapter 6.

Using Standard Deviation Reduction (SDR) to
Determine Appropriate Split

• SDR for a possible (independent) variable (F) is difference between
standard deviation (SD) in segment
• before the split

• after the split: weighted sum of SD

𝑆: subset of data;
c: number of subsets after split;
|𝑆𝑖|: size of subset i generated from 𝑆;
|𝑆|: size of subset S;
𝑠𝑑(𝑆): standard deviation of subset S;
𝑠𝑑(𝑆𝑖): standard deviation of subset i generated from 𝑆

𝑆𝐷 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑝𝑙𝑖𝑡 = 𝑠𝑑 𝑆

𝑆𝐷 𝑎𝑓𝑡𝑒𝑟 𝑠𝑝𝑙𝑖𝑡 =

𝑖=1

𝑐
𝑆𝑖
𝑆

𝑠𝑑(𝑆𝑖)

𝑆𝐷𝑅(𝐹) = 𝑠𝑑 𝑆 −

𝑖=1

𝑐
𝑆𝑖
𝑆

𝑠𝑑(𝑆𝑖)

Miguel Forte, R. (2015) Mastering Predictive Analytics with R. Birmingham: Packt Publishing. Chapter 6.

Exercise 6.2 – Predicting Quality of Wines (I/II)

• A wine making is a profitable but challenging and competitive
business. Wine industry has heavily invested in ways to assist wine
makers.

• You are asked to come up with a model that helps to predict the
quality of wines and identify key factors that affect quality of a
wine.

• Use dataset "Wine" and:
• build a regression tree in R using rpart command (dependent variable: ‘quality’)

• interpret your results and plot them

("Wine" R code)

Exercise 6.2 – Predicting Quality of Wines (II/II)

• Dataset includes:
• 4,898 observations
• 12 variables

• Independent variables: 11 chemical properties of samples:
• laboratory analysis of fixed acidity, volatile acidity, and citric acid

• sugar content

• chlorides

• free sulfur dioxide and total sulfur dioxide

• density, alcohol, pH, and sulphates

• Dependent variable: quality scale ranging from 0 (very bad) to 10
(excellent)

("Wine" R code)

Holdout Method

Holdout Method

• Holdout method is procedure of splitting data into training and test
subsets
• model builds upon training dataset

• model then predicts upon test dataset

• keep one-third to 10% of the whole data (as rule of thumb) for testing

Lantz, B. (2015) Machine Learning with R (Second edition). Birmingham: Packt Publishing. Chapter 10.

Application of Holdout Method in:
Regression Trees

Visualizing Holdout Method:
"Predicting Quality of Wines"

Full dataset: 100% obs.

Train dataset: 75% obs.

Test dataset: 25% obs.

Model
Evaluation

Application of Holdout Method on "Quality of
Wines"

• Data:
• 4,898 observations
• 12 variables

• 11 chemical properties of samples:
• laboratory analysis of fixed acidity, volatile acidity, and citric acid

• sugar content

• chlorides

• free sulfur dioxide and total sulfur dioxide

• density, alcohol, pH, and sulphates

• quality scale ranging from zero (very bad) to 10 (excellent)

• Split data
• 75% for training (i.e., observations 1 to 3,750)
• 25% for testing (i.e., observations 3,751 to 4,898)

• Evaluate the model

("Wine_Holdout" R code)

Reminder: "Quality of Wines"

str(wine)

'data.frame': 4898 obs. of 12 variables:

$ fixed.acidity : num 6.7 5.7 5.9 5.3 6.4 7 7.9 6.6 7 6.5 ...

$ volatile.acidity : num 0.62 0.22 0.19 0.47 0.29 0.14 0.12 0.38...

$ citric.acid : num 0.24 0.2 0.26 0.1 0.21 0.41 0.49 0.28...

$ residual.sugar : num 1.1 16 7.4 1.3 9.65 0.9 5.2 2.8 2.6 3.9 ...

$ chlorides : num 0.039 0.044 0.034 0.036 0.041 0.037...

$ free.sulfur.dioxide : num 6 41 33 11 36 22 33 17 34 40 ...

$ total.sulfur.dioxide: num 62 113 123 74 119 95 152 67 90 130 ...

$ density : num 0.993 0.999 0.995 0.991 0.993 ...

$ pH : num 3.41 3.22 3.49 3.48 2.99 3.25 3.18 3.21...

$ sulphates : num 0.32 0.46 0.42 0.54 0.34 0.43 0.47 0.47...

$ alcohol : num 10.4 8.9 10.1 11.2 10.9 ...

$ quality : int 5 6 6 4 6 6 6 6 6 7 ...

Step 1: explore your data

Step 2: Create Train and Test Dataset

wine_train <- wine[1:3750,]
wine_test <- wine[3751:4898,]

Let’s take the first 75% of observations as train and the rest as test
dataset

Step 3: Training the Model on the Train Dataset

library(rpart)
m.rpart <- rpart(quality ~ ., data = wine_train)

Note: As usual, you can get simple/detailed information about the
tree you have made using:

m.rpart
summary(m.rpart)

Step 4: Apply your Model on Test Dataset and
Predict

p.rpart <- predict(m.rpart, wine_test)

Predict the quality of wine in the test dataset (i.e., remaining 25%
obs.):

Step 5: Evaluating Model Performance Using
Test Dataset (I/II)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 5.000 6.000 5.901 6.000 9.000

summary(wine_test$quality)

summary(p.rpart)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.545 5.563 5.971 5.893 6.202 6.597

Compare summary for actual quality with predicted quality in the
remaining 25% obs.:

Step 5: Evaluating Model Performance Using
Test Dataset (II/II)

Function for MAE and check your model performance on the test
dataset:

MAE <- function(actual, predicted) {
mean(abs(actual - predicted))

}

MAE(wine_test$quality, p.rpart)

[1] 0.5872652

On average, you are making 0.59 error
in your predictions for the quality of
wine (in your test dataset)

Summarize your perditions using MAE:

𝑀𝐴𝐸 𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛

𝑖=1

𝑛

𝑒𝑖 , 𝑒𝑖: error for prediction of wine i

Thank You!

Iman.Ahmadi@wbs.ac.uk
Room No.: 3.207

mailto:Iman.Ahmadi@wbs.ac.uk

