

For the Change Makers

Dr. Iman Ahmadi Assistant Prof. of Marketing

> Marketing & Strategy Analytics: Exploratory Data Analysis II

Visualizing Numeric Variables: Univariate

Visualizing Data in R: CRM Dataset

Load a new dataset on CRM dataset

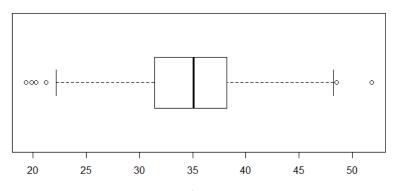
("CRM" R code)

cust.df <- read.csv("http://goo.gl/PmPkaG")
str(cust.df)</pre>

'data.frame': 1000 obs. of 12 variables: \$ cust.id : int 1 2 3 4 5 6 7 8 9 10 ... \$ age : num 22.9 28 35.9 30.5 38.7 ... \$ credit.score : num 631 749 733 830 734 ... \$ credit.score : num 631 749 733 830 734 ... \$ email : Factor w/ 2 levels "no","yes": 2 2 2 2 1 2 2 2 1 1 ... \$ distance.to.store: num 2.58 48.18 1.29 5.25 25.04 ... \$ online.visits : int 20 121 39 1 35 1 1 48 0 14 ... \$ online.trans : int 3 39 14 0 11 1 1 13 0 6 ... \$ online.spend : num 58.4 756.9 250.3 0 204.7 ... \$ store.trans : int 4 0 0 2 0 0 2 4 0 3 ... \$ store.spend : num 140.3 0 0 95.9 0 ... \$ sat.service : int 3 3 NA 4 1 NA 3 2 4 3 ... \$ sat.selection : int 3 3 NA 2 1 NA 3 3 2 2 ...

Creating Boxplots in R

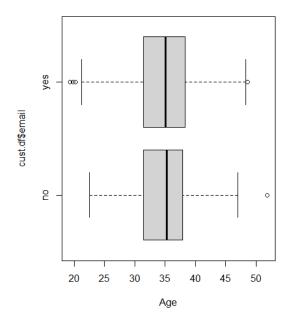
• Basic boxplot is good for data exploration:


summary(cust.df\$age)

Min.1st Qu.MedianMean3rd Qu.Max.19.3431.4335.1034.9238.2051.86

boxplot(cust.df\$age, xlab="Age",

main="Boxplot for Age of Customers", horizontal=TRUE)


Boxplot for Age of Customers

Age

Creating Boxplots in R

boxplot(cust.df\$age ~ cust.df\$email, xlab="Age", main="Boxplot for Age of Customers", horizontal=TRUE) #boxplot by email

Boxplot for Age of Customers

Measuring Spread – Variance

- The normal distribution, which describes many types of real-world data, can be defined with:
 - mean: the center of normal distribution
 - spread: is measured by a statistic called the standard deviation
- In order to calculate the standard deviation, we must first obtain the **variance**

$$Var(x) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

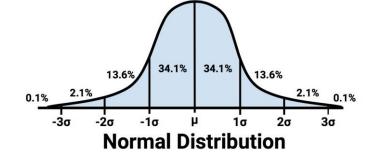
n: sample size *i*: index for observation (*i* = 1, ..., *n*) $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$

(the average of the squared differences between each value and the mean value)

Lantz, B. (2015) Machine Learning with R (Second edition). Birmingham: Packt Publishing. Chapter 2.

Measuring Spread – Standard Deviation

• The standard deviation is the square root of the variance:

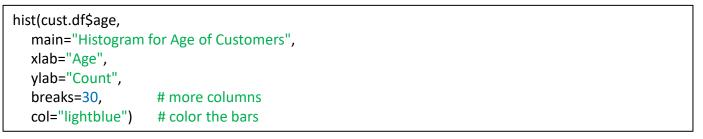

$$SD(x) = \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$n: \text{ sample size}$$

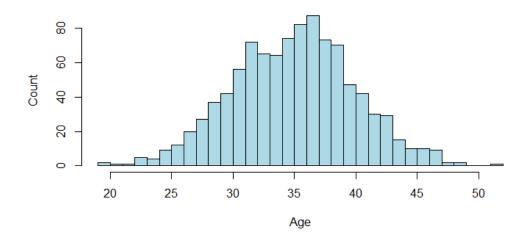
$$i: \text{ index for observation } (i = 1, ..., n)$$

$$\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$$

• σ can be used to quickly estimate how extreme a given value is under the assumption that it came from a normal distribution


• The 68-95-99.7 rule:

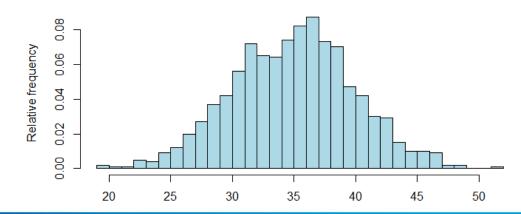
Lantz, B. (2015) Machine Learning with R (Second edition). Birmingham: Packt Publishing. Chapter 2.


(Note: $\mu = \bar{x}$)

Towards Histograms in R (II/III)

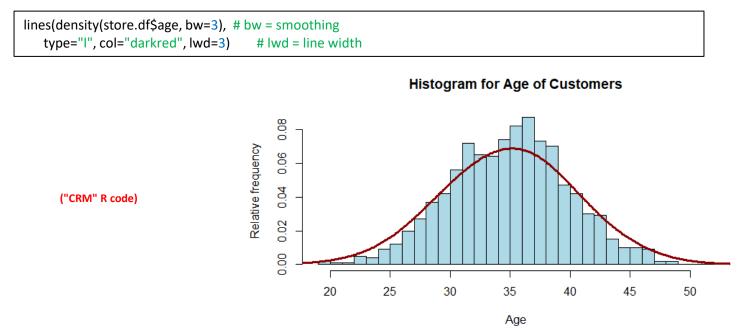
• Make it more granular and colorful

Histogram for Age of Customers



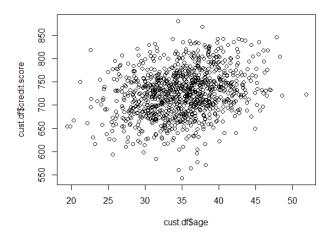
Towards Histograms in R (III/III)

• Change counts to proportions (i.e., %)



Towards Histograms in R (IV/IV)

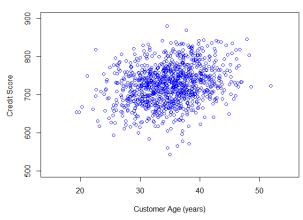
• Add density curve


• A **density curve** is a graph that shows probability. The area under the density curve is equal to 100 percent of all probabilities.

Visualizing Numeric Variables: Bivariate

Scatter Plots (I/II)

- Scatterplot is a diagram that visualizes a bivariate relationship
- Patterns in the placement of observations (usually by dots) reveal the **underlying associations** between the two variables
- How does age relate to credit score?


plot(x=cust.df\$age, y=cust.df\$credit.score)

Scatter Plots (II/II)

• Add color, labels, and adjust the axis limits:

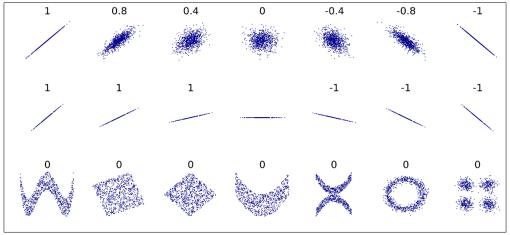
```
plot(cust.df$age, cust.df$credit.score,
        col="blue",
        xlim=c(15, 55), ylim=c(500, 900),
        main="Active Customers as of June 2014",
        xlab="Customer Age (years)", ylab="Credit Score")
```


Active Customers as of June 2014

Linear Associations: Correlation Analysis (III/IV)

$-1 \leq r \leq 1$, where:

- positive values denote positive linear correlation;
- negative values denote negative linear correlation;
- value of 0 denotes no linear correlation;
- the closer the value is to 1 or -1, the stronger the linear correlation

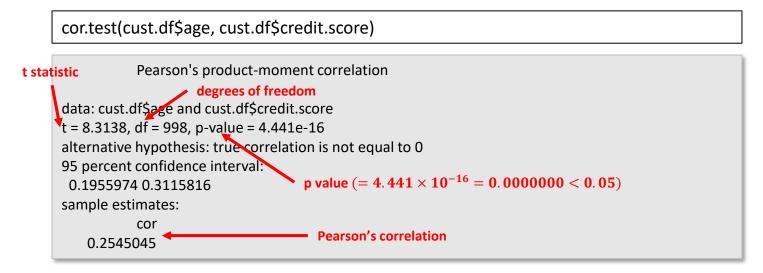

Size of Correlation (<i>r</i>)	Interpretation
0.90 to 1.00 (-0.90 to -1.00)	Very high positive (negative) correlation
0.70 to 0.90 (–0.70 to –0.90)	High positive (negative) correlation
0.50 to 0.70 (–0.50 to –0.70)	Moderate positive (negative) correlation
0.30 to 0.50 (–0.30 to –0.50)	Low positive (negative) correlation
0.00 to 0.30 (0.00 to -0.30)	Little (if any) correlation

Rule of Thumb for Interpreting the Size of a Correlation Coefficient

Linear Associations: Correlation Analysis (IV/IV)

$-1 \leq r \leq 1$, where:

- positive values denote positive linear correlation;
- negative values denote negative linear correlation;
- value of 0 denotes no linear correlation;
- the closer the value is to 1 or -1, the stronger the linear correlation



Source of figure: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Examples of correlation coefficient

Correlation in R

• A basic inferential test of Pearson's r can be done with cor.test():

• Age is associated with credit score here, r = 0.25, p < 0.05

Correlation Matrix

• Correlation matrix

cor(cust.df[, c(2, 3, 5:12)]) # only numeric cols				
	age	credit.score	distance.to.store	
age	1.000000000	0.254504457	0.00198741	
credit.score	0.254504457	1.000000000	-0.02326418	
distance.to.store	0.001987410	-0.023264183	1.00000000	
online.visits	-0.061381070	-0.010818272	-0.01460036	
online.trans	-0.063019935	-0.005018400	-0.01955166	
online.spend	-0.060685729	-0.006079881	-0.02040533	
store.trans	0.024229708	0.040424158	-0.27673229	
store.spend	0.003841953	0.042298123	-0.24149487	
sat.service	NA	NA	NA	
sat.selection	NA	NA	NA	

- Note: the full output is not shown here
- You can also get correlations for complete cases only with 'use="complete.obs"'

cor(cust.df[, c(2, 3, 5:12)], use="complete.obs")

Visualize Correlation Matrix

• Use the "corrplot" package. See book (and help) for more options.

Exercise 3.2 – Salaries for Professors

Access the Salaries data set:

install.packages("car") # search how you can install a library in RStudio library(car) data(Salaries)

- 1. Create descriptive statistics for each of the variables. What does the dataset seem to contain?
- 2. Plot salary vs. years since PhD.
- 3. What is the correlation for salary vs. years since PhD? ... vs. years of service? Are they statistically significant? Explain.
- 4. Draw a visualization of all bivariate relationships.

Note: make sure that you fully interpret your output and results.

("Salary PhD" R code)

Exercise 3.3 – Salaries for Professors

Access the StoreData data set:

- 1. What does the dataset seem to contain? What do you notice?
- 2. Draw a boxplot and histogram for sales of product 1 and 2.
- 3. Compare the sales of product 1 when it is on promotion and when it is not.
- 4. What is the correlation for sales of product 1 vs. price of product 1? ... vs. sales of product 2? ... vs. price of product 2? Are they statistically significant? Explain.
- 5. Draw a visualization of all bivariate relationships.

Note: make sure that you fully interpret your output and results.

Thank You!

Iman.Ahmadi@wbs.ac.uk Room No.: 3.207