## ECMM133

# UNIVERSITY OF EXETER <br> COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES ENGINEERING 

## January 2021

# Water Supply and Distribution Management 

 Module Convenor: Prof Raziyeh FarmaniDuration: TWO HOURS + 30 minutes upload time

Answer ALL three questions

Materials to be supplied:
Formulae sheet.

This is an OPEN BOOK examination.

## Question 1 (34 marks)

Water is pumped from a pumping station (PS) into a service reservoir (Figure Q1) from which it supplies a water distribution district following a 24 -hour demand pattern $\left(\mathrm{Q}_{\mathrm{ws}}\right)$. The pumping station consists of two fixed-speed pumps delivering water directly to the reservoir. Table Q1a gives the possible pump combinations and respective flows into the reservoir (assuming head losses are accounted for):

Table Q1a. Pump flows

| Pump <br> Combination | Flow <br> $(\mathrm{l} / \mathrm{s})$ |
| :---: | ---: |
| Both pumps off | 0.0 |
| Only Pump 1 on | 6.0 |
| Only Pump 2 on | 8.0 |
| Pumps 1 and 2 on | 11.0 |



Figure Q1. Reservoir schematic

The flows delivered directly from the reservoir to the distribution district during the 24-hour period are given in Table Q1b. The associated changes in the reservoir storage volume are given in Table Q1c.

Table Q1c. Reservoir Storage
Table Q1b. Qws $_{\text {wlows }}$

| Time <br> period | $\mathrm{Q}_{\text {ws }}$ <br> $(\mathrm{l} / \mathrm{s})$ |
| :---: | :---: |
| $0 \mathrm{am}-4 \mathrm{am}$ | 3.15 |
| $4 \mathrm{am}-8 \mathrm{am}$ | 13.78 |
| $8 \mathrm{am}-12 \mathrm{pm}$ | 10.625 |
| $12 \mathrm{pm}-4 \mathrm{pm}$ | 4.73 |
| $4 \mathrm{pm}-8 \mathrm{pm}$ | 9.47 |
| $8 \mathrm{pm}-0 \mathrm{am}$ | 5.24 |


| Time <br> $(\mathrm{h})$ | Reservoir <br> Storage <br> $\left(\mathrm{m}^{3}\right)$ |
| ---: | :---: |
| 0 am | 131.0 |
| 4 am | 244.0 |
| 8 am | 204.0 |
| 12 pm | 51.0 |
| 4 pm | 98.0 |
| 8 pm | 48.0 |
| 0 am | 131.0 |

(a) Assuming that the level fluctuations in the reservoir are small enough (i.e., do not influence pump flows), determine the water volumes pumped into the reservoir during this 24 -hour period.
(b) Comment on the ability of the pumps and the reservoir to supply the specified demands on a long-term basis (assuming that the demand pattern will repeat itself on the 24-hour basis).
(c) Determine which pump combinations were operating during the 24 -hour period.
(12 marks)

## Question 2 (33 marks)

The following pipe network and the associated pipe and node data are given in Figure Q2 and Tables Q2a and Q2b. Node 1 is the large open reservoir with constant water elevation of 60 m and pipe 1 intake at the elevation of 14 m . The kinematic viscosity of water is equal to $1.14 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.


Figure Q2. Network Layout
Table Q2a. Network Pipe Data

| Pipe | Length <br> $(\mathrm{m})$ | Diameter <br> $(\mathrm{mm})$ | K <br> $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| 1 | 2000 | 400 | 0.15 |
| 2 | 1000 | 300 | 0.15 |
| 3 | 1000 | 300 | 0.15 |

Table Q2b. Network Node Data

| Node | Elevation <br> $(\mathrm{m})$ | Demand <br> $(\mathrm{l} / \mathrm{s})$ <br> at 0 hrs | Demand <br> (1/s) 12 hrs | Demand <br> $(\mathrm{l} / \mathrm{s})$ <br> at 24 hrs |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 10 | 0 | 0 | 0 |
| 3 | 11 | 9 | 13 | 9 |
| 4 | 15 | 15 | 23 | 15 |

(a) Calculate the nodal pressures for a given 24 -hour period (i.e. at 0, 12, 24 hrs ). Use the Swamee-Jain formula to calculate pipe friction factors. Neglect all local head losses in the system.
(18 marks)
(b) A two-setting time modulated Pressure Reducing Valve (PRV) is installed immediately downstream of the reservoir. Calculate the required PRV settings for the $0-11: 59 \mathrm{~h}$ and $12-23: 59 \mathrm{~h}$ time periods to achieve the minimum system pressure of 15 m at the critical node. Calculate the resulting reduced nodal pressures for a given 24 -hour period.
(15 marks)

## Question 3 (33 marks)

The pipe network and the associated pipe and node data are given in Figure Q3 and Tables Q3a and Q3b. The fixed head reservoir (water elevation equal to 50 m ) is located at node 1.


Figure Q3. Network Layout

Table Q3a. Network Pipe Data

| Pipe | Length <br> $(\mathrm{m})$ | Diameter <br> $(\mathrm{mm})$ | Hazen- <br> Williams <br> $\mathrm{C}(-)$ |
| :---: | :---: | :---: | :---: |
| 1 | 500 | 250 | 130 |
| 2 | 400 | 150 | 130 |
| 3 | 1200 | 100 | 130 |
| 4 | 600 | 200 | 130 |
| 5 | 1000 | 100 | 130 |

Table Q3b. Network Node Data

| Node | Elevation <br> $(\mathrm{m})$ | Demand <br> $(\mathrm{I} / \mathrm{s})$ |
| :---: | :---: | :---: |
| 2 | 12 | 17 |
| 3 | 22 | 20 |
| 4 | 17 | 12 |
| 5 | 22 | 17 |

(a) Calculate the unknown pipe flows and nodal pressure heads in the above system by performing the first two iterations of the Hardy-Cross method.
(i) Iteration 1
(ii) Iteration 2
(b) Assuming the target (head loss) accuracy of $\varepsilon_{H}=0.01 \mathrm{~m}$, calculate the pipe flows.

## ECMM133 Formula Sheet

## Pipe Flow Formulae:

Darcy-Weisbach:

$$
h_{f}=\lambda L / D v^{2} / 2 g
$$

Laminar Flow: $\lambda=64 / R_{e}$
Turbulent Flow: $1 / \sqrt{\lambda}=-2 \log _{10}\left[k /(3.7 D)+2.51 /\left(R_{e} \sqrt{\lambda}\right)\right] \quad$ (Colebrook-White) $1 / \sqrt{\lambda}=-2 \log _{10}\left[k /(3.7 D)+5.74 /\left(R_{e}^{0.9}\right)\right] \quad$ (Swamee-Jain)

Hazen-Williams:
$v=0.355 C D^{0.63} S_{f}^{0.54} \quad$ where $S_{f}=h_{f} / L$
General Formulation:
$h_{f}=R \cdot Q \cdot|Q|^{n-1}$
$\begin{array}{ll}\text { Darcy-Weisbach: } R=0.8106 \lambda L /\left(g D^{5}\right) & \text { and } n=2.0 \\ \text { Hazen-Williams: } R=10.648 L /\left(C^{1.852} D^{4.871}\right) & \text { and } n=1.852\end{array}$

## Orifice equation:

$$
Q=C_{d} A \sqrt{2 g \Delta H}
$$

## Hydraulic Solvers:

Hardy-Cross Method:

$$
\Delta Q_{i}^{(k)}=\frac{-\sum_{i} h_{f, i}^{(k)}}{n \sum_{i} \frac{h_{f, i}^{(k)}}{Q_{i}^{(k)}}} \quad \quad Q_{i}^{(k+1)}=Q_{i}^{(k)}+\sum_{l \supset i} \Delta Q_{l i}^{(k)}
$$

Linear Theory Method:
$H_{i}^{(k+1)}=\frac{\sum_{j}^{N_{i}} \frac{H_{j}^{(k)}}{U_{i j}^{(k)}}-Q_{d, i}}{\sum_{j}^{N_{i}} \frac{1}{U_{i j}^{(k)}}}$

$$
Q_{i j}^{(k+1)}=\frac{H_{i}^{(k+1)}-H_{j}^{(k+1)}}{U_{i j}^{(k)}} \quad U_{i j}^{(k)}=R_{i j}\left|Q_{i j}^{(k)}\right|^{n-1}
$$

## Water Properties:

Density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Kinematic Viscosity $=1.14 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
Bulk Modulus (Coefficient of Compressibility) $=2.15 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

## END OF QUESTION PAPER

