
Python for Data Analysis

2

R has taken over academic data analysis
• Used to be SPSS

• Then SPSS and STATA (less coding, drop down menus)

• R is free, has more applications, and is constantly updated by open
source contributions

• Scripting language, automate processes, reusable code, etc.

• Open source allows for rapid model release for academic research
advancements

• R has taken over other software usage for more advanced modeling and
analytics

• However, Python is becoming the dominant language of data science

3

Python dominates outside academia (Social Science)

• Plays well with cloud resources

• Developed by computer scientists
• Code is cleaner/structurally similar across libraries

• Python is becoming the dominant language of data science

• Annual Survey from Kaggle Users:
• https://www.kaggle.com/kaggle-survey-2022

Kaggle – huge data science and machine learning community – data, code,
and other resources. Host machine learning competitions; can submit
predictions for competitions 4

https://www.kaggle.com/kaggle-survey-2022
https://www.kaggle.com/kaggle-survey-2022

5

Download full survey results:

https://www.kaggle.com/kaggle-survey-2022

https://www.kaggle.com/kaggle-survey-2022

6

7

8

Colab and Kaggle
Notebooks both built
over Jupyter Notebooks

9

Python use is growing for data analysis

10

Tu
to

ri
al

 C
o

n
te

n
t

11

Overview of Python Libraries for Data
Scientists

Reading Data; Selecting and Filtering the Data; Data manipulation,
sorting, grouping, rearranging (focus on tabular data)

Intro to Plotting

Python Libraries for Data Science

Many popular Python toolboxes/libraries:
• NumPy
• SciPy
• Pandas
• SciKit-Learn

Visualization libraries
• matplotlib
• Seaborn (built over matplot lib and is easier to use)

 and many more …

12

A library is essentially a collection of code that can be
imported, stored and reused. Within the base software
there is a standard library and then you can install other
user-contributed libraries.

Python Libraries for Data Science

NumPy:
▪ Efficiently organize raw data so that we can do math on the structured data

▪ Introduces objects for multidimensional arrays and matrices, as well as
functions that allow to easily perform advanced mathematical and statistical
operations on those objects

▪ Powers many other libraries – i.e., many other Python libraries are built on
NumPy

13

Link: http://www.numpy.org/

http://www.numpy.org/

Python Libraries for Data Science

SciPy:
▪ built on NumPy

▪ uses NumPy to do advanced mathematical equations in an efficient way

▪ collection of algorithms for linear algebra, differential equations, numerical
integration, optimization, statistics and more

▪ part of SciPy Stack

▪ will be used by other libraries but we won’t use it directly that much this
semester (a little when we do tree visualizations and cluster techniques for
unsupervised learning)

14

Link: https://www.scipy.org/scipylib/

https://www.scipy.org/scipylib/

Python Libraries for Data Science

Pandas:
▪ Uses NumPy

▪ it’s how we get tabular data into Python - provides tools for data
manipulation: reshaping, merging, sorting, slicing, aggregation etc.

▪ allows handling missing data

15

Link: http://pandas.pydata.org/

http://pandas.pydata.org/

Link: http://scikit-learn.org/

Python Libraries for Data Science

SciKit-Learn:
▪ Python library used for classic machine learning

▪ provides machine learning algorithms: classification, regression, clustering,
model validation etc.

▪ the most used machine learning library

▪ built on NumPy, SciPy and matplotlib

16

http://scikit-learn.org/stable/

matplotlib:
▪ basic visualizations

▪ python 2D plotting library which produces publication quality figures in a
variety of hardcopy formats

▪ a set of functionalities similar to those of MATLAB

▪ line plots, scatter plots, barcharts, histograms, pie charts etc.

▪ relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/

Python Libraries for Data Science

17

https://matplotlib.org/

Seaborn:
▪ based on matplotlib

▪ easier to use - allows you to use less lines of code

▪ provides high level interface for drawing attractive statistical graphics

▪ similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

Python Libraries for Data Science

18

https://seaborn.pydata.org/

2 pathways to Python

• Google Drive - Colab Notebook (required for this semester)
• Notebook interface that connects to cloud computer for free (doesn’t use

local processors)

• Local installation through Anaconda

19

Start Google Colab Jupyter notebook from Google
Drive:

20

+New -> More -> Google Colaboratory

Start Google Colab Jupyter notebook from
Google Drive:

21

https://colab.research.google.com/

22

File -> New Notebook

*Or just search for Google Colab if it

doesn’t come up in your drive.

✓ Make sure you can open up a Jupyter Notework using Google Colab

23

Hands-on exercises

Tour of Jupyter Notebook
The Basics

• Two types of cells (code and text)

• Organizing notebooks with markdown

• Saving – download to local computer to upload to
Courseworks

• Download .ipynb – the file extension for any Jupyter
notebook (Interactive Python Notebook)

• .py is raw Python code

• Can also share in email and will automatically open

• Upload files for session storage – will be deleted when
done unless you save them to drive or locally
• CSV file to read in with Pandas

24

Formatting text cells
• Jupyter Notebook supports Markdown, which is a lightweight markup

language that allows you to format your text.

• Powered by HTML but simplifies it

25

Headings
Use number sign (#) followed by blank space for titles and headings:
 # for titles
 ## for major headings
 ### for subheadings
 #### for 4th level subheadings

Emphasis
Use the following code to emphasize text:
 Bold text: __string__ or **string**
 Italic text: _string_ or *string*

Line breaks
Sometimes markdown doesn’t make line breaks
when you want them.
To force a linebreak, use the following code:

✓ Play around with Text and Code cells (add, delete,
reorganize, format text, etc.)

✓ Name your notebook

✓ Download .ipynb

26

Hands-on exercises

Local Python installation
• Most popular way is Anaconda

Distribution

• Free download, comes already set up with
many core libraries pre-installed

• Access to Jupyter Notebooks

• Plugged into local computer

27

https://www.anaconda.com/download

https://www.anaconda.com/download

In []:

Loading Python Libraries

28

#Import Python Libraries

import numpy as np

import scipy as sp

import pandas as pd

import matplotlib as mpl

import seaborn as sns

Press Shift+Enter to execute the jupyter cell

-Load up all code from a library. We can rename to make it easier to refer
to the library when we need to (different than R)

-Good practice to import libraries at top of notebook

In []:

Reading data using pandas

29

#Read csv file

df=pd.read_csv("https://raw.githubusercontent.com/Apress/data-analysis-and-visualization-using-

python/master/Ch07/Salaries.csv")

There are several pandas commands to read other data formats:

pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None, na_values=['NA'])

pd.read_stata('myfile.dta')

pd.read_sas('myfile.sas7bdat')

pd.read_hdf('myfile.h5','df')

Note: The above command can include other optional arguments to fine-tune the data import process.

read_csv is a function that takes inputs and processes them into
outputs (functions are referred to as methods in Python)

The CSV file is the input. The output is the object we’ve named df.

Single equal sign (=) assigns the name df to the object The double
equal sign (==) is the equality operator. It is used to compare the values
of two expressions or objects. If the values are equal, the operator
returns True; otherwise, it returns False.

In [3]:

Exploring data frames

30

#List first 5 records

df.head()

Out[3]:

Note: Rows start with an index value of 0.
Columns in dataframes have names.

Hands-on exercises (five minutes)

31

✔ Learn more about the method (i.e.-function) with question marks

✔Run ?df.head() to learn about head method args. (in Colab you will need to select
and hover over the function)

✔Try to read the first 10, 20, 50 records (by adding and changing an input argument)

✔Can you guess how to view the last few records;

✔Hint: Flip a coin and get heads or ???

32

Data Frame data types

Pandas Type Native Python Type Description

object string The most general dtype. Will be

assigned to your column if column has

mixed types (numbers and strings).

int64 int Numeric characters. 64 refers to the

number of character it can hold.

float64 float Numeric characters with decimals. If a

column contains numbers and

NaNs(see below), pandas will default

to float64, in case your missing value

has a decimal.

datetime64,

timedelta[ns]

N/A (but see

the datetime module in

Python’s standard library)

Values meant to hold time data. Look

into these for time series experiments.

33

Data frames can have different types of data in each column.

http://doc.python.org/2/library/datetime.html

In [4]:

Data Frame data types – Code to explore the
data frame

34

#Check a particular column type

df['salary'].dtype

Out[4]: dtype('int64')

[‘salary’] will isolate the salary column.

• dtype is an attribute, not a function (or method). dtype prints out data for a particular column. Follows this
structure: dot notation and without ().

• An attribute is a variable that is stored on an object. A method is a function associated with an object. Methods
can be used to perform actions on objects or to access the attributes of objects.

• Main difference is that attributes store data, while methods perform actions. Attributes can be accessed using the
dot notation.

Data Frame data types – Code to explore the
data frame

35

In [5]: #Check types for all the columns

df.dtypes

Out[5]: rank
discipline
phd
service
sex
salary
dtype: object

object
object
int64
int64
object
int64

dtype: object
Pandas includes the type of
information that you are printing
out. This output is text.

Data Frames attributes

36

Python objects have attributes and methods.

df.attribute description

dtypes list the types of the columns

columns list the column names

axes list the row labels and column names

ndim number of dimensions (data frames and matrices have 2, not as useful)

size number of elements (how many total cells are there)

shape return a tuple (collection of objects separated by commas) representing the
dimensionality (i.e. how many rows and columns)

values numpy representation of the data (just the raw data, without columns and row
names)

df.dtypes

Hands-on exercises (5 minutes)

37

✔ Find how many records this data frame has

✔How many elements are there?

✔What are the column names?

✔What types of columns we have in this data frame?

Hands-on exercises

38

✔ Find how many records this data frame (df) has df.shape will give # of rows

✔How many elements are there? df.size

✔What are the column names? df.columns

✔What types of columns we have in this data frame? df.dtypes

Data Frames methods

39

df.method() description

head([n]), tail([n]) first/last n rows

describe() generate descriptive statistics (for numeric columns only)

max(), min() return max/min values for all numeric columns

mean(), median() return mean/median values for all numeric columns

std() standard deviation

sample([n]) returns a random sample of the data frame

dropna() drop all the records with missing values

Unlike attributes, python methods have parenthesis.
All attributes and methods can be listed with a dir() function: dir(df)

Hands-on exercises (5 minutes)

40

✔Give the summary for the numeric columns in the dataset

✔Calculate standard deviation for all numeric columns;

✔What are the mean values of the first 50 records in the dataset? Hint: use
head() method to subset the first 50 records and then calculate the mean

Hands-on exercises

41

✔Give the summary for the numeric columns in the dataset df.describe()

✔Calculate standard deviation for all numeric columns; df.std()

✔What are the mean values of the first 50 records in the dataset? Hint: use
head() method to subset the first 50 records and then calculate the mean

 df2=df.head(50)

 df2.mean(numeric_only=True)

Subsetting data

• Next week, we’ll need to get data ready for our prediction models

• SciKit-Learn – requires data to be separated into two objects
• Single Y variable (dependent variable, target feature)

• X data – explanatory variables, control variables

42

Selecting a column in a Data Frame

Method 1: Subset the data frame using column name:

 df['sex']

Method 2: Use the column name as an attribute:

 df.sex

Note: there is an attribute rank for pandas data frames, so to select a column with a name "rank"
we should use method 1

43

Isolate data in a column by using this structure:
 [‘column name’]

Column names are automatically attributes

Hands-on exercises (5 minutes)

44

✔Calculate the basic statistics for the salary column;

✔ Find how many values in the salary column (use count method);

✔Calculate the average salary;

Hands-on exercises

45

✔Calculate the basic statistics for the salary column;

✔ Find how many values in the salary column (use count method);

✔Calculate the average salary;

y=df['salary']

y.count()

y.mean()

Explore categories and subsets of data

• Similar to pivot tables in excel

• Organize data based on specific categories in a column

• For example, organize data by the different values in the Rank
Column (Prof, Assoc Prof, Asst Prof, etc.) and calculate average
salary by the ranks

46

Data Frames groupby method

47

Using "group by" method we can:

• Split the data into groups based on some criteria
• Calculate statistics (or apply a function) to each group
• Similar to dplyr() function in R

In []: #Group data using rank

df_rank = df.groupby(['rank'])

In []: #Calculate mean value for each numeric column per each group

df_rank.mean()

Data Frames groupby method

48

Once groupby object is created we can calculate various statistics for each group:

In []: #Calculate mean salary for each professor rank:

df.groupby('rank')[['salary']].mean()

Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas
Series object. When double brackets are used the output is a Data Frame

Data Frames groupby method

49

groupby performance notes:

- no grouping/splitting occurs until it's needed. Creating the groupby object
only verifies that you have passed a valid mapping

- by default the group keys are sorted during the groupby operation. You may
want to pass sort=False for potential speedup:

In []: #Calculate mean salary for each professor rank:

df.groupby(['rank'], sort=False)[['salary']].mean()

Data Frame: filtering

50

Subsetting on rows
To subset the data we can apply a filter. For example if we want to subset the
rows in which the salary value is greater than $120K:

In []: #Identifies rows in which salary is greater than 120000:

df_sub = df[df['salary'] > 120000]

True or False depending on

whether this condition is met.

Anything True is subsetted. Output

is all rows with salary > 120000

Data Frame: filtering

51

In []: #Select only those rows that contain female professors:

df_f = df[df['sex'] == 'Female']

Any Boolean operator can be used to subset the data:
> greater; >= greater or equal;
< less; <= less or equal;
== equal; != not equal;

Hands-on exercises (5 minutes)

52

✔Go through some examples of subsetting on columns / filtering on row
✔Change the operators that define your subset
✔Use shape or other attributes to compare subset to original data to make sure

you’ve filtered out the data appropriately

Data Frames: Slicing

53

Removing columns, subsetting rows, outputting objects. Motivation is how to slice
up data to get it ready for the models.

There are a number of ways to subset the Data Frame:
• one or more columns
• one or more rows
• a subset of rows and columns

Rows and columns can be selected by their position or label

Data Frames: Slicing

54

When selecting one column, it is possible to use single set of brackets, but the
resulting object will be a Series (not a DataFrame):

In []: #Select column salary:

df['salary']

When we need to select more than one column and/or make the output to be a
DataFrame, we should use double brackets:

In []: #Select columns rank and salary:

df[['rank','salary']]

Data Frames: Selecting rows

55

If we need to select a range of rows, we can specify the range using ":"

In []: #Select rows by their position:

df[10:20]

Notice that the first row has a position 0, and the last value in the range is omitted.

So for 0:10 range the first 10 rows are returned with the positions starting with 0 and
ending with 9.

Data Frames: method loc

56

If we need to select a range of rows, using their labels we can use method loc:

In []: #Select rows by their labels:

df_sub.loc[:,['rank','sex','salary']]

Out[]:

• Uses [] instead of () that we’d normally use with

a function

• Index for rows and names for columns

• : means you want to select all rows (if you

wanted only some rows you would do something

like 0:20

• And only want Rank, Sex and Salary columns

Data Frames: method iloc

57

Use index values for both rows and columns
If we need to select a range of rows and/or columns, using their positions we can
use method iloc:

In []: #Select rows by their labels:

df_sub.iloc[10:20,[0, 3, 4, 5]]

Out[]:
0 is the first column

Data Frames: method iloc (summary)

58

df.iloc[0] # First row of a data frame

df.iloc[i] #(i+1)th row

df.iloc[-1] # Last row

df.iloc[:, 0] # All rows and First column

df.iloc[:, -1] # All rows and Last column

df.iloc[0:7] #First 7 rows

df.iloc[:, 0:2] #All rows and First 2 columns

df.iloc[1:3, 0:2] #Second through third rows and first 2 columns

df.iloc[[0,5], [1,3]] #1st and 6th rows and 2nd and 4th columns

Data Frames: Sorting

59

We can sort the data by a value in the column using the sort_value method.
By default the sorting will occur in ascending order and a new data frame is
returned.

In []: # Create a new data frame from the original sorted by the column Salary

df_sorted = df.sort_values(by ='service')

df_sorted.head()

Out[]:

Data Frames: Sorting

60

We can sort the data using 2 or more columns:

In []: df_sorted = df.sort_values(by =['service', 'salary'], ascending = [True, False])

df_sorted.head(10)

Out[]:

Missing Values

61

Missing values are marked as NaN

In []: # Read a dataset with missing values

flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv")

Out[]:

Missing Values

62

There are a number of methods to deal with missing values in the data frame (will
have a class dedicated to missing data later in the semester:

df.method() description

dropna() Drop missing observations

dropna(how='all') Drop observations where all cells is NA

dropna(axis=1, how='all') Drop column if all the values are missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values

fillna(0) Replace missing values with zeros

isnull() returns True if the value is missing

notnull() Returns True for non-missing values

Missing Values

63

• When summing the data, missing values will be treated as zero
• If all values are missing, the sum will be equal to NaN
• cumsum() and cumprod() methods ignore missing values but preserve them in

the resulting arrays
• Missing values in GroupBy method are excluded (just like in R)
• Many descriptive statistics methods have skipna option to control if missing

data should be excluded . This value is set to True by default (unlike R)

Aggregation Functions in Pandas

64

Aggregation - computing a summary statistic about each group, i.e.
• compute group sums or means
• compute group sizes/counts

Common aggregation functions:

min, max
count, sum, prod
mean, median, mode, mad
std, var

Aggregation Functions in Pandas

65

agg() method are useful when multiple statistics are computed per column:

In []: flights[['dep_delay','arr_delay']].agg(['min','mean','max'])

Out[]:

Basic Descriptive Statistics

66

df.method() description

describe Basic statistics (count, mean, std, min, quantiles, max)

min, max Minimum and maximum values

mean, median, mode Arithmetic average, median and mode

var, std Variance and standard deviation

sem Standard error of mean

skew Sample skewness

kurt kurtosis

Graphics to explore the data

67

Seaborn package is built on matplotlib but provides high level
interface for drawing attractive statistical graphics, similar to ggplot2
library in R.

It specifically targets statistical data visualization

Matplotlib introductory examples

68

Line chart code

In []: from matplotlib import pyplot as plt

years=[1950,1960,1970,1980,1990,2000,2010]

gdp=[300.2,543.3,1075.9,2862.5,5979.6,10289.7,14958.3]

create a line chart, years on x-axis, gdp on y-axis

plt.plot(years,gdp,color='green',marker='o',linestyle='solid')

add a title

plt.title("Nominal GDP")

add a label to the y-axis

plt.ylabel("Billions of $")

plt.show() # code to print out final chart

Can also import subfolders of a library (may need to save memory)

(Libraries are also known as Modules and sub-folders are sub-modules)

Two inputs for a line chart.

These are both Python lists

Check out other examples in

the Notebook

	Slide 1: Python for Data Analysis
	Slide 2: Contact Info
	Slide 3: R has taken over academic data analysis
	Slide 4: Python dominates outside academia (Social Science)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Python use is growing for data analysis
	Slide 11: Tutorial Content
	Slide 12: Python Libraries for Data Science
	Slide 13: Python Libraries for Data Science
	Slide 14: Python Libraries for Data Science
	Slide 15: Python Libraries for Data Science
	Slide 16: Python Libraries for Data Science
	Slide 17: Python Libraries for Data Science
	Slide 18: Python Libraries for Data Science
	Slide 19: 2 pathways to Python
	Slide 20: Start Google Colab Jupyter notebook from Google Drive:
	Slide 21: Start Google Colab Jupyter notebook from Google Drive:
	Slide 22: https://colab.research.google.com/
	Slide 23: Hands-on exercises
	Slide 24: Tour of Jupyter Notebook
	Slide 25: Formatting text cells
	Slide 26: Hands-on exercises
	Slide 27: Local Python installation
	Slide 28: Loading Python Libraries
	Slide 29: Reading data using pandas
	Slide 30: Exploring data frames
	Slide 31: Hands-on exercises (five minutes)
	Slide 32
	Slide 33: Data Frame data types
	Slide 34: Data Frame data types – Code to explore the data frame
	Slide 35: Data Frame data types – Code to explore the data frame
	Slide 36: Data Frames attributes
	Slide 37: Hands-on exercises (5 minutes)
	Slide 38: Hands-on exercises
	Slide 39: Data Frames methods
	Slide 40: Hands-on exercises (5 minutes)
	Slide 41: Hands-on exercises
	Slide 42: Subsetting data
	Slide 43: Selecting a column in a Data Frame
	Slide 44: Hands-on exercises (5 minutes)
	Slide 45: Hands-on exercises
	Slide 46: Explore categories and subsets of data
	Slide 47: Data Frames groupby method
	Slide 48: Data Frames groupby method
	Slide 49: Data Frames groupby method
	Slide 50: Data Frame: filtering
	Slide 51: Data Frame: filtering
	Slide 52: Hands-on exercises (5 minutes)
	Slide 53: Data Frames: Slicing
	Slide 54: Data Frames: Slicing
	Slide 55: Data Frames: Selecting rows
	Slide 56: Data Frames: method loc
	Slide 57: Data Frames: method iloc
	Slide 58: Data Frames: method iloc (summary)
	Slide 59: Data Frames: Sorting
	Slide 60: Data Frames: Sorting
	Slide 61: Missing Values
	Slide 62: Missing Values
	Slide 63: Missing Values
	Slide 64: Aggregation Functions in Pandas
	Slide 65: Aggregation Functions in Pandas
	Slide 66: Basic Descriptive Statistics
	Slide 67: Graphics to explore the data
	Slide 68: Matplotlib introductory examples

