Assignment Semester 1, 2023-24 Session

Q1 and Q2 - Week 1. From Pure Maths To The Maths Of Economics And Finance

Q1 Simplify $\exp \left(2 \ln A+3 \ln B-4 \ln C+5 \ln D^{6}\right)$, where A, B, C, D are all positive quantities.

Q2 Revenue $R(P, Q)=P Q$ is a function of two variables: price P and quantity Q. Sketch a contour map of R in the region $0 \leq P \leq 10,0 \leq Q \leq 20$.

HINTS: (i) What mathematical shape is exemplified by the equation $x y=12$? What would a contour map of the function $f(x, y) \equiv x y$ look like?
(ii) One suitable contour height for $R(P, Q)$ is $h=50$. Pick other contour heights using your own judgment.
(iii) Note that the question asks for a sketch, not an exact plot.

Q3 and Q4 - Week 2: Things Economists Do With Differentiation

Q3 (a) By gathering berries for t hours, Robinson Crusoe can obtain $X(t) \mathrm{kg}$ of berries, where $X(t)=5 \sqrt{t}$. How many kg of berries will he obtain in his fifth hour of labour?
(b) Robinson works continuously, starting at 8:00 am. At noon, what is his marginal product of labour-time?

Q4 (a) National income Y currently stands at $\$ 20 \mathrm{tn} / \mathrm{yr}$ (trillion dollars per year) and consumption $C=C(Y)$ at $\$ 16 \mathrm{tn} / \mathrm{yr}$. If marginal consumption $C^{\prime}(Y)=0.7$, use the Small Increment Formula to obtain an approximation to the level of consumption if Y rises by $\$ 0.2 \mathrm{tn} / \mathrm{yr}$.
(b) The general price level P is rising over time according to the formula $P(t)=$ $P_{0}(\exp (\alpha t)+b t)$, where P_{0}, α, and b are positive parameters. Calculate:
(i) The rate of increase of prices, \dot{P} at t;
(ii) The rate of growth of prices \hat{P} at t. Then
(iii) Evaluate both \dot{P} and \hat{P} when $t=0$.

Q5 - Week 3: Unconstrained Optimization With A Single Choice Variable

Q5 Consider the optimization problem whose formal statement is

$$
\min _{x} f(x), \text { where } f(x) \equiv 3 x^{4}-4 x^{3}-12 x^{2}+10 \quad[\mathrm{P}]
$$

(a) Write down the first-order condition for this problem.
(b) Find any critical points of the problem.
(c) By using the second derivative function $f^{\prime \prime}(x)$, decide which critical points, if any, are strict local minima of $f(x)$.
(d) Using the information obtained so far, solve the problem P.

Q6 and Q7 - Week 4: Many Variables. Constrained Optimization.

Q6 (a) Mr Jones has utility function $U(A, B)=A B$. He loses b bananas, reducing his banana holding to $B-b$. How many extra apples a will he need as compensation, to restore him to his former level of utility?
(b) From consuming A apples and B bananas, Ms Jones gets utility $U(A, B)=$ $\sqrt{A B+A+2 B}$. What is Ms Jones' marginal utility with respect to apples, in terms of A and B ?

Q7 My utility function over apples (A) and bananas (B) is $U(A, B)=A^{2} B$. If apples cost $\$ 6$ per kg , and bananas cost $\$ 4$ per kg , and I have $\$ 50$ to spend. I wish to maximize utility, subject to the constraint that the value of my purchases equals by budget limit \$50.
(a) State my problem formally, as a problem of constrained optimization, and say what the objective function and choice variables are.
(b) Write down the corresponding Lagrangean function.
(c) Obtain first-order conditions, and state what other condition is needed to obtain a solution.
(d) Obtain optimal values A^{*}, B^{*}, explaining your working clearly. You may assume that $A^{*} \neq 0$ at the solution. You may also assume that the secondorder conditions for this constrained problem are satisfied.

Q8 and Q9 - Week 5: Logic, Sets, and Functions.

(a) Express the set $\left\{x: x \in \mathbb{R}_{(+)} \wedge\left(x^{2}<16\right)\right\}$ using interval notation.
(b) Are the following three statements logically equivalent? Use the symbols and methods of propositional logic to find out, and explain.
i. Without a well-educated labour force, the economy cannot thrive.
ii. If there is a well-educated labour force, the economy can thrive.
iii. If the economy can thrive, the labour force must be well-educated.

HINT. Let e mean 'The workforce is well-educated'. Let t mean 'The economy can thrive'.

Q9. (a) What is meant by $[2,3)$? Explain informally, then formally, using boundvariable notation.
(b) What is meant by $\mathbb{R}_{(+)}$, and why is this set important in economic applications?
(c) From income Y dollars per year where $0 \leq Y \leq 10^{6}$, and leisure L hours per day, where $0 \leq L \leq 24$, I get utility $U(Y, L)$, which is a non-negative real number. State the domain and codomain of U, and use these to express U in colon/arrow notation. HINT. The domain and codomain are always sets.

